

Hibernate Best Practices

www.thoughts-on-java.org

1. Use a projection that fits your use case
JPA and Hibernate support more projections than just entities. There
are 3 different kinds of them, and each one has its advantages and
disadvantages:

1.1 Entities

You should use the entity projection when you need all attributes of
the entity and for update or delete operations that affect only a small
number of entities.

1.2 POJOs

POJO projections allow you to create use case specific
representations of the database record. This is especially useful if you
only need a small subset of the entity attributes or if you need
attributes from several related entities.

1.3 Scalar Values

Scalar value projections present the values as Object[]s. You should
only use them if you want to select a small number of attributes and
directly process them in your business logic.

em.find(Author.class, 1L);

List<BookPublisherValue> bookPublisher = em.createQuery(

“SELECT new “

+ “org.thoughts.on.java.model.BookPublisherValue(“

+ ”b.title, b.publisher.name) FROM Book b”,

BookPublisherValue.class).getResultList();

List<Object[]> authorNames = em.createQuery(

“SELECT a.firstName, a.lastName FROM Author a”)

.getResultList();

http://www.thoughts-on-java.org/

Hibernate Best Practices

www.thoughts-on-java.org

2. Use the kind of query that fits your use case
JPA and Hibernate offer multiple implicit and explicit options to
define a query. None of them is a good fit for every use case, and you
should, therefore, make sure to select the one that fits best.

2.1 EntityManager.find()
The EntityManager.find() method is the best and easiest way to get
an entity by its primary key.

2.2 JPQL
JPQL is very similar to SQL, but it operates on entities and their
relationships instead of database tables. You can use it to create
queries of low and moderate complexity.

2.3 Criteria API
The Criteria API provides you an easy to API to dynamically define
queries at runtime.

em.find(Author.class, 1L);

TypedQuery<Author> q = em.createQuery(

“SELECT a FROM Author a JOIN a.books b “

+ “WHERE b.title = :title”,

Author.class);

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Author> q = cb.createQuery(Author.class);

Root<Author> author = q.from(Author.class);

q.select(author);

http://www.thoughts-on-java.org/

Hibernate Best Practices

www.thoughts-on-java.org

2.4 Native Queries
Native queries provide you the chance to write and execute plain
SQL statements.

I explain native queries in more detail in Native Queries – How to call
native SQL queries with JPA and How to use native queries to
perform bulk updates.

3. Use bind parameters

You should use parameter bindings for your query parameters
instead of adding the values directly to the query String. This
provides several advantages:

 you do not need to worry about SQL injection,
 Hibernate maps your query parameters to the correct types

and
 Hibernate can do internal optimizations to provide better

performance.

MyEntity e = (MyEntity) em.createNativeQuery(

“SELECT * FROM myentity e “

+ “WHERE e.jsonproperty->’longProp’ = ‘456’“,

MyEntity.class).getSingleResult();

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpa-native-queries/
http://www.thoughts-on-java.org/jpa-native-queries/
http://www.thoughts-on-java.org/use-native-queries-perform-bulk-updates/
http://www.thoughts-on-java.org/use-native-queries-perform-bulk-updates/

Hibernate Best Practices

www.thoughts-on-java.org

4. Use static Strings for named queries and parameter
names
This is just a small thing but it’s much easier to work with named
queries and their parameters if you define their names as static
Strings. I prefer to define them as attributes of the entities with
which you can use them but you can also create a class that holds all
query and parameter names.

@NamedQuery(

name = Author.QUERY_FIND_BY_LAST_NAME,

query = “SELECT a FROM Author a “

+ “WHERE a.lastName = :”

+ Author.PARAM_LAST_NAME)

@Entity

public class Author {

public static final String

QUERY_FIND_BY_LAST_NAME =

“Author.findByLastName”;

public static final String PARAM_LAST_NAME =

“lastName”;

http://www.thoughts-on-java.org/

Hibernate Best Practices

www.thoughts-on-java.org

5. Use JPA Metamodel when working with Criteria API
The JPA Metamodel generates an additional class for each entity. You
can use it to reference entity attributes in a type safe way when
creating a Criteria query.

I explain the JPA Metamodel and how you can generate its classes in
Create type-safe queries with the JPA static metamodel.

6. Use surrogate keys and let Hibernate generate new values
The main advantage of a surrogate primary key (or technical ID) is
that it is one simple number and that all involved systems can handle
it very efficiently. Hibernate can also use existing database features,
like sequences or auto-incremented columns, to generate unique
values for new entities.

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Author> q = cb.createQuery(Author.class);

Root<Author> author = q.from(Author.class);

q.select(author);

q.where(cb.equal(author.get(Author_.lastName), lastName));

@Id

@GeneratedValue

@Column(name = “id”, updatable = false, nullable = false)

private Long id;

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/static-metamodel/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/

Hibernate Best Practices

www.thoughts-on-java.org

7. Specify natural identifier

You should specify natural identifiers, even if you decide to use a
surrogate key as your primary key. A natural identifier nevertheless
identifies a database record and an object in the real world. A lot of
use cases use them instead of an artificial, surrogate key.

It is, therefore, good practice to model them as unique keys in your
database. Hibernate also allows you to model them as a natural
identifier of an entity and provides an extra API for retrieving them
from the database.

The only thing you have to do to model an attribute is a natural id, is
to annotate it with @NaturalId.

You can read more about natural identifiers and Hibernate’s
proprietary API in How to map natural IDs with Hibernate.

@Entity

public class Book {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = “id”, updatable = false, nullable = false)

 private Long id;

 @NaturalId

 private String isbn;

 …

}

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/naturalid-good-way-persist-natural-ids-hibernate/

Hibernate Best Practices

www.thoughts-on-java.org

8. Use SQL scripts to create the database schema

The database schema has a huge influence on the performance and
size of your database. You, therefore, should design and optimize the
database schema yourself and export it as an SQL script.

The following snippet shows a persistence.xml file which tells
Hibernate to run the create.sql script to setup the database.

You can learn more about the different configuration parameters in
Standardized schema generation and data loading with JPA 2.1.

<persistence>

 <persistence-unit name=”my-persistence-unit” transaction-

type=”JTA”>

 <properties>

 <property name=

”javax.persistence.schema-generation.scripts.action”

value=”create”/>

 <property name=

”javax.persistence.schema-generation.scripts.create-

target”

value=”./create.sql”/>

 </properties>

 </persistence-unit>

</persistence>

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/standardized-schema-generation-data-loading-jpa-2-1/

Hibernate Best Practices

www.thoughts-on-java.org

9. Log and analyze all queries during development

Hibernate hides all database interactions behind its API, and it’s often
difficult to guess how many queries it will perform for a given use
case. The best way to handle this issue is to log all SQL statements
during development and analyze them before you finish your
implementation task. You can do that by setting the log level of the
org.hibernate.SQL category to DEBUG.

I explain Hibernate’s most important log categories and provide
detailed recommendations for a development and a production
configuration in my Hibernate Logging Guide.

10. Don’t use FetchType.EAGER for to-many relationships

Eager fetching is another common reason for Hibernate performance
issues. It tells Hibernate to initialize a relationship when it fetches an
entity from the database.

The main issue is, that Hibernate will fetch the related entities
whether or not they are required for the given use case. That creates
an overhead which slows down the application and often causes
performance problems.

You should use FetchType.LAZY instead and fetch the related entities
only if you need them for your use case.

@ManyToMany(mappedBy = “authors”,

fetch = FetchType.LAZY)

private Set<Book> books = new HashSet<Book>();

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/hibernate-logging-guide/

Hibernate Best Practices

www.thoughts-on-java.org

11. Initialize required lazy relationships with the initial query

FetchType.LAZY tells Hibernate to fetch the related entities only
when they’re used. This helps you to avoid certain performance
issues. But it’s also the reason for the LazyInitializationException and
the n+1 select issue which occurs when Hibernate has to perform an
additional query to initialize a relationship for each of the selected n
entities.

The best way to avoid both issues is to fetch an entity together with
the relationships you need for your use case. One option to do that is
to use a JPQL query with a JOIN FETCH statement.

I explain several other options and their benefits in 5 ways to
initialize lazy relationships and when to use them.

12. Avoid cascade remove for huge relationships

CascadeType.REMOVE tells Hibernate to also delete the related
entities when it deletes this one. This makes it often difficult to
understand what exactly happens if you delete an entity. And that’s
something you should always avoid.

If you have a closer look at how Hibernate deletes the related
entities, you will find another reason to avoid it. Hibernate performs
2 SQL statements for each related entity: 1 SELECT statement to
fetch the entity from the database and 1 DELETE statement to
remove it. This might be OK, if there are only 1 or 2 related entities
but creates performance issues if there are large numbers of them.

List<Author> authors = em.createQuery(

“SELECT DISTINCT a “

+ “FROM Author a JOIN FETCH a.books b”,

Author.class).getResultList();

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/5-ways-to-initialize-lazy-relations-and-when-to-use-them/
http://www.thoughts-on-java.org/5-ways-to-initialize-lazy-relations-and-when-to-use-them/

Hibernate Best Practices

www.thoughts-on-java.org

13. Use @Immutable when possible

Hibernate regularly performs dirty checks on all entities that are
associated with the current PersistenceContext to detect required
database updates. This is a great thing for all mutable entities. But
not all entities have to be mutable.

Entities can also map read-only database views or tables. Performing
any dirty checks on these entities is an overhead that you should
avoid.

You can do this by annotating the entity with @Immutable. Hibernate
will then ignore it in all dirty checks and will not write any changes to
the database.

@Entity

@Immutable

public class BookView {

…

}

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/hibernate-tips-map-view-hibernate/

